圧密方程式の解法

境界条件

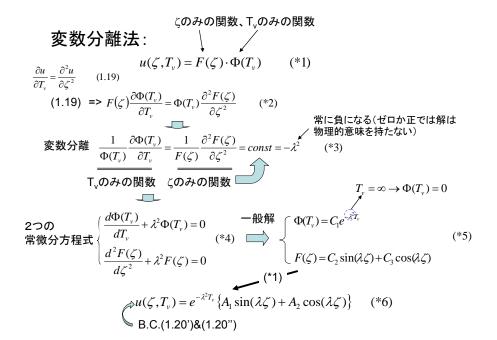
#\delta t \zeta = 0,
$$u(0, T_v) = 0$$
 (1.20') $\zeta = \frac{z}{H}$, $T_v = \frac{c_v t}{H^2}$ (1.18)

$$at$$
 $\zeta = 1$, $\frac{\partial u(1,T_v)}{\partial \zeta} = 0$ (1.20") $0 \le \xi \le 1$ 有限領域

初期条件

$$at$$
 $T_{_{v}}=0, \ u(\zeta,0)=\Delta\sigma_{_{z0}}=const.$ (1.21) 変数分離法 Method of Separation of Variables

Fourier series



排水境界条件

非排水
$$(1.20') \quad u(0,T_{\nu}) = 0 \qquad \Longrightarrow \quad u(0,T_{\nu}) = e^{-\lambda^2 T_{\nu}} A_2 = 0, \quad \therefore A_2 = 0 \quad (*7)$$
 非排水
$$\frac{\partial u(\zeta,T_{\nu})}{\partial \zeta} = e^{-\lambda^2 T_{\nu}} \left\{ A_1 \lambda \cos(\lambda \zeta) + A_2 \lambda \sin(\lambda \zeta) \right\}$$
 境界条件
$$(1.20'') \quad \frac{\partial u(1,T_{\nu})}{\partial \zeta} = 0 \implies \frac{\partial u(1,T_{\nu})}{\partial \zeta} = e^{-\lambda^2 T_{\nu}} \left\{ A_1 \lambda \cos(\lambda) \right\} = 0$$

=> $A_1\lambda\cos\lambda=0,~~A_1\neq0$ <=[A_1 = A_2 =0では、uは 常に0、物理的意味なし]

ここまで A₂=0,

あるnに対する定数 A_{1n} では、(*6)は周期関数となり、初期条件(1.21)を満足できない。 無限個のn、 λ_n について解の一次結合も解で、初期条件を満足する可能性あり。

線型偏微分方程式
$$\underbrace{\frac{\Delta_{I}=>A}{\ell}}_{\text{ness}}\left\{-\left(\frac{2n+1}{2}\pi\right)^{2}T_{\nu}\right\}\sin\left(\frac{2n+1}{2}\pi\zeta\right) \tag{*9}$$
 I.C. (1.21)
$$u(\zeta,0)=\Delta\sigma_{z0}=const.$$

$$u(\zeta,0) = \sum_{n=0}^{\infty} A_n \sin\left(\frac{2n+1}{2}\pi\zeta\right) = \Delta\sigma_{z_0} = const \quad (*10)$$
両辺に $\sin\left(\frac{2m+1}{2}\pi\zeta\right) \quad (m=0,1,2,\cdots\infty)$ を掛けの→1まで積分
$$\sum_{n=0}^{\infty} A_n \int_0^1 \sin\left(\frac{2n+1}{2}\pi\zeta\right) \sin\left(\frac{2m+1}{2}\pi\zeta\right) d\zeta = \Delta\sigma_{z_0} \int_0^1 \sin\left(\frac{2m+1}{2}\pi\zeta\right) d\zeta \quad (*11)$$

$$= \int_0^1 \sin(m\pi x) \sin(n\pi x) dx = -\int_0^1 \frac{1}{2} \left[\cos\{(m+n)\pi x\} - \cos\{(m-n)\pi x\}\right] dx$$

$$= -\frac{1}{2} \left[\frac{\sin((m+n)\pi x)}{(m+n)\pi} - \frac{\sin((m-n)\pi x)}{(m-n)\pi}\right]_0^1 = \frac{(m\neq n):0}{(m=n):-\frac{1}{2} \int_0^1 (\cos 2n\pi - 1) dx = \frac{1}{2}}$$

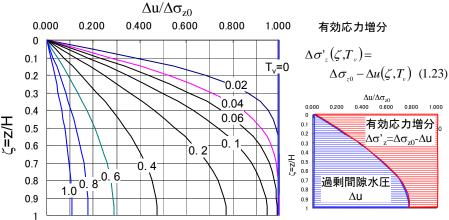
$$= \frac{2\pi + 1}{2}\pi \int_0^1 \sin((m+n)\pi x) dx = -\frac{1}{2} \int_0^1 \cos((m+n)\pi x) dx = \frac{1}{2} \int_0^$$

圧密方程式の解

ある時間における過剰間隙水圧の分布 => 等時線

注意:この∆uは(1.22)式のuと同じ

(isochrone)



1.4 圧密変形(沈下)、圧密度

$$\Delta \mathcal{E}_z = m_v \Delta \sigma'_z$$
 (1.2') $\Delta \mathcal{E}_z = m_v \Delta p$ (1.2) Δp :圧密圧力増分 (1.23) \longrightarrow $\Delta \mathcal{E}_z = m_v \left(\Delta \sigma_z \angle \Box \mathcal{E}\right)$ (1.2'')

圧密沈下量AS=変形量:鉛直ひずみを圧縮層厚さh間で積分

$$\Delta S = \int_{0}^{h} \Delta \varepsilon_{z} dz = h \int_{0}^{1} m_{v} (\Delta \sigma_{z0} - \Delta u) d\zeta$$

$$= m_{v} \left[\Delta \sigma_{z0} h - h \int_{0}^{1} \Delta u d\zeta \right]$$

$$= m_{v} \Delta \sigma_{z0} h \left[1 - \frac{1}{\Delta \sigma_{z0}} \int_{0}^{1} \Delta u d\zeta \right]$$

$$\Delta S$$

$$\Delta u_{t=0}$$

$$\Delta S = m_{v} \Delta \sigma_{z0} h \left[1 - \frac{\Delta u_{m}}{\Delta u_{t=0}} \right]$$

$$\Delta S = m_{v} \Delta \sigma_{z0} h \left[1 - \frac{\Delta u_{m}}{\Delta u_{t=0}} \right]$$

$$(1.24)$$

$$(:: \Delta u = \Delta \sigma_{z0})$$

$$= m_{v} \Delta \sigma_{z0} h, \ t = \infty$$

$$(:: \Delta u = 0)$$

沈下量: 土層全域の全応力増分に対する有効応力増分の割合に比例 条件?? $(\Delta\sigma_{z0}h)$

圧密の進行速度 <圧密問題>

Ex) 90%圧密量にかかる時間

最終沈下量(=100%沈下量)

(degree of consolidation)

圧密度 $U(t)=\Delta S(t)/\Delta S_f$ $t=>T_v$

(1.24)
$$U(T_{v}) = 1 - \frac{\int_{0}^{1} \Delta u(\zeta, T_{v}) d\zeta}{\Delta u_{t=0}}$$

$$= 1 - \frac{1}{\Delta \sigma_{z0}} \int_{0}^{1} \sum_{n=0}^{\infty} \frac{2\Delta \sigma_{z0}}{a_{n}} \exp\left(-a_{n}^{2}T_{v}\right) \sin\left(a_{n}\zeta\right) d\zeta$$

$$= 1 - \sum_{0}^{\infty} \frac{2}{a_{n}} \exp\left(-a_{n}^{2}T_{v}\right) \int_{0}^{1} \sin(a_{n}\zeta) d\zeta$$

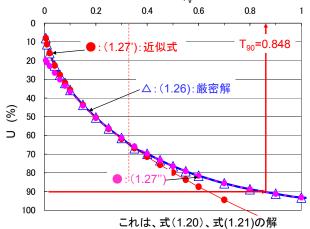
$$= 1 - \sum_{0}^{\infty} \frac{2}{a_{n}^{2}} \exp\left(-a_{n}^{2}T_{v}\right) \int_{0}^{1} \sin(a_{n}\zeta) d\zeta$$

$$= 1 - \sum_{0}^{\infty} \frac{2}{a_{n}^{2}} \exp\left(-a_{n}^{2}T_{v}\right)$$

$$= 1 - \frac{8}{\pi^{2}} \sum_{0}^{\infty} \frac{1}{(2n+1)^{2}} \exp\left(-\left(\frac{2n+1}{2}\pi\right)^{2}T_{v}\right) \qquad (1.26)$$

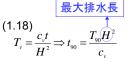
$$U(T_{v}) \approx 1 - \frac{8}{\pi^{2}} \exp\left(\frac{\pi^{2}}{4}T_{v}\right) \qquad (1.27")$$
級数第一項

U-T_v関係 式(1.26)_{T_v}



実際の圧密時間,沈下量

 T_{90} (= T_v at U=90%)=0.848



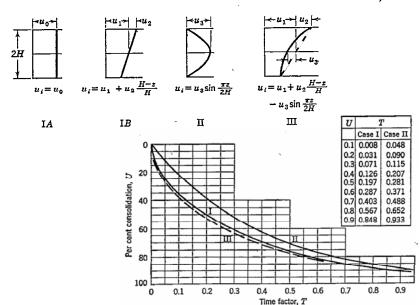
 $\Delta S_{90} = 0.9 m_{v} \cdot h \cdot \Delta \sigma_{z0}$

両端排水:H=h/2片端排水:H=h

U~T_v関係は初期条件、境界条件に依存 🕨

m_v、c_vの決定法:標準圧密試験 定ひずみ圧密試験

異なる初期条件のU-T、関係(Taylor: 1948)



本日のTechnical terms

変数分離法: method of separation of variables

等時線: isochrone

圧密度: degree of consolidation

課題(11/4_②)

常時、排水条件が成り立つ透水性が大きい砂礫層に挟まれた厚さ8mの粘土層がある。この上に盛土荷重($\Delta \sigma_{z0}$ =100kPa)が作用した。

- (1) この粘土の m_v =0.0002 m^2/kN 、 c_v =0.01 m^2/day として90%圧密に要する時間 (t_{90}) とその時の沈下量 (ΔS_{90}) を求めよ。
- (2) 下端が非排水面の場合、 t_{90} は両端排水の場合に比べて何倍になるか?

